
Abstract- We present a novel approach for neuron model 
specification using a Genetic Algorithm (GA) to develop simple 
firing neuron models consisting of a single compartment with 
one inward and one outward current.  The GA not only chooses 
the model parameters, but also chooses the formulation of the 
ionic currents (i.e. single-variable, two-variable, instantaneous, 
or leak).  The fitness function of the GA compares the 
frequency output of the GA generated models to an I-F curve of 
a nominal Morris-Lecar (ML) model.  Initially, several 
different classes of models compete among the population.  
Eventually, the GA converges to a population containing only 
ML-type firing models with an instantaneous inward and 
single-variable outward current.  Simulations where ML-type 
models are restricted from the population are also investigated.  
This GA approach allows the exploration of a universe of 
feasible model classes that is less constrained by model 
formulation assumptions than traditional parameter estimation 
approaches. While we use a simple model, this technique is 
scalable to much larger and more complex formulations. 
Keywords – Genetic Algorithm, neuron model 
 

I. INTRODUCTION 
 

Genetic Algorithms (GAs) are a class of popular, 
biologically inspired optimization method.  The algorithm 
involves starting with an initial population of models with 
randomly chosen parameters, and letting the population 
evolve using mechanisms inspired by the idea of natural 
selection.  Each model in the population is tested for fitness 
and assigned a score.  This fitness score is the basis for that 
model’s likelihood of reproducing (through crossover) and 
retention for subsequent generations.  The desire is that with 
each generation, characteristics (parameter values and model 
specification) of the best performing models will combine to 
produce better models.  Researchers have previously used 
GAs for parameter optimization of neurons models [1].  In 
this study, we use GAs not only for parameter optimization, 
but also for model specification.  That is, the GA also 
chooses the type of currents that the model will use to fire 
action potentials. 
 

II. METHODS 
 
A.  Model Selection 

To implement use of a genetic algorithm to identify both 
model parameters and specification, the chromosome must 
contain information about parameter values as well as model 
structure.  Model parameters are encoded by chromosomes, a 
concatenation of binary strings of given length, and decoded 
into real numbers in a specified interval using Gray 

decoding.  The model specification uses two two-bit sections 
to select the formulation of the inward and outward currents.  
Conceptually, one can think of each individual as choosing 
one inward and one outward current from each set of four 
possibilities.  The four current types are listed below. 

Genetic Algorithm for Optimization and 
Specification of a Neuron Model 

 

W. C. Gerken1,2, L. K. Purvis1,2, R. J. Butera1,2,3
 

1Laboratory for Neuroengineering, Georgia Institute of Technology, Atlanta, GA 
2School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 

3Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 

 
 
Type 1.       Type 2. 
Two state variable current  Single state variable current 
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Type 3.       Type 4. 
Instantaneous variable current Leak current 
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The membrane potential is found using the differential 
equation 
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where V is the membrane potential, Cm is the whole cell 
capacitance, t is time, and Iapp is the applied stimulus current.  
The range of values for each parameter in the model is given 
in Table 1. 
 
 
 

Parameter Min. 
Value Max. Value Precision (bits) 

Channel Type 1 4 2 
Maximum Conductance 0 nS 10 nS 10 
Leak Reversal Potential  -80 mV -40 mV 10 

Half Activation  -77 mV 50 mV 10 
Slope factor  +/- 3 +/- 20 mV 10 + 1(sign bit) 

Applied Current 2 20 1.0 increments 
Inward Reversal Potential +50 mV - - 

Outward Reversal Potential -77 mV - - 
Membrane Capacitance 1 nF - - 

Table 1- Parameter ranges and constant values. 

 
B.  Morris-Lecar model 

The Morris-Lecar (ML) model is a relatively simple 
Hodgkin-Huxley style model originally developed for 
modeling barnacle muscle fiber action potentials [2].  This 



E.  Simulations model has two voltage dependent conductances, a fast 
(instantaneous) inward Ca2+ and a (single-variable) slow 
outward K+, capable of producing neural-like oscillations. 

MATLAB (Mathworks, VA) along with “The MATLAB 
Genetic Algorithm Toolbox” [4] was used for running the 
GA.  Model simulations were performed using the 
interactive differential equation simulation package XPP [5].  
Each generation was run in parallel on a Beowulf computing 
cluster consisting of 54 2.4GHz (or higher) PCs running 
Redhat Linux 9.0. 

 Firing rate encoding uses the frequency of action 
potentials in response to a stimulus as the measure of neuron 
information.  By sweeping the applied stimulus current 
through a range of values, the generated current-frequency 
(I-F) curve can be used to describe the neuron’s oscillatory 
activity.  

III. RESULTS  
C.  Fitness Function  

An ideal fitness function succinctly quantifies the 
optimality of the solution.  The function must strongly 
correlate with the goal of the algorithm.  Since we are 
interested in finding models that produce non-linear dynamic 
behavior, we can use the I-F curves to quantify the spiking 
rate as a function of input.  This approach closely mirrors 
experimental methodology.  Using a ‘goal’ I-F curve 
generated from a nominal ML model, we compute the fitness 
function using a normalized sum of the squares error (SSE) 
measure at a fixed set of applied current levels. 

 Fig. 1 represents the output of the firing neuron models 
produced by the GA after 100 generations.  The desired I-F 
curve generated by the ML model is represented by the black 
curve, and all other color lines are members of the 
population that were able to produce spikes at generation 
100.  Not all 1,000 members of the final population are able 
to fire action potentials.  For the simulation results shown in 
Fig. 1, there are about 350 firing neuron models.  Many of 
these models produce I-F curves that closely resemble the 
ML model.  The class of firing neuron models present at 
generation 100 is only the ML-type models, that is, an 
instantaneous inward and single-variable outward current. 
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  It is interesting to observe the classes of models that 
compete during the first 100 generations.  Fig. 2 illustrates 
this competition between the three classes of models that 
were able to produce firing neuron models.  The three classes 
of firing neuron models are a model with:  1) a single-
variable inward and an instantaneous outward current (blue 
line), 2) an instantaneous inward and a two-variable outward 
current (red line), and 3) an instantaneous inward and single-
variable outward current (black line).   By generation 100, it 
is the 3rd class of neuron models that triumphs.  This is the 
ML-type model (instantaneous inward and single-variable 
outward current).  If the GA is allowed to proceed until 
generation 500, the ML-type model continues to be the only 
class of firing model in the population. 

 
Non-spiking simulations are given an extremely poor 

(high) fitness score.  This measure captures the dynamics of 
the system with minimum computation.  The SSE measure 
heavily weights outliers which can help to capture the nature 
of bifurcation as outliers will occur around the point where 
the model starts to spike.  Additionally, this measure 
converges to zero as the models behavior more closely 
approximates the goal of the algorithm.  This convergence is 
important, as the genetic algorithm needs a measure that can 
convey the relative success of achieving the algorithm’s 
goal. 
  
D.  Genetic Algorithm Parameters 

 

Each individual is defined by a 168-bit binary 
chromosome.  The parameters are determined by a fixed 
segment of the chromosome.  The simulation consists of 100 
generations.  The initial generation starts with 1000 
randomly created models.  This population size should be 
adequate given our chromosome size [3].  Each model is 
simulated and scored as described previously.  The ranking 
function ranks individuals represented by their score, to be 
minimized, and returns the corresponding individual 
fitnesses.  Using the results of the ranking, the best 200 
models are selected to remain in the population.  Using 
stochastic universal sampling to select ‘parents’, the next 
generation is created using crossover and mutation.  The new 
population then consists of the previous 200 best models and 
800 children models.  The toolbox default was used for 
crossover and mutation rates of 70% and 0.4%, respectively.  
 Fig. 1. I-F curve of the ML model (black line) and all firing neuron 

models produced by the GA (color lines) at generation 100. 



 
 

Fig. 2. Demographics graph showing the three classes of firing 
neuron models generated by the GA.  The three classes of models 
are a single-variable inward and an instantaneous outward current 
(blue line), an instantaneous inward and a two-variable outward 

current (red line), and an instantaneous inward and single-variable 
outward current (black line). 

 
 
 Additional simulations were run where no ML-type 
models were allowed to enter the population in order to 
study if other potential model specifications were ‘crowded 
out’ by the true specification.  The resulting population was 
dominated by the instantaneous inward and two-variable 
outward current models.  In this simulation, the models score 
better, sooner than in the original simulation.  Presumably 
this is due to the reduced diversity among the population, 
which promotes more reliable crossover.  However, 
exclusion of the ML-type models results (after 100 
generations) in GA produced models with inferior scorers 
compared to the original simulation.  Further limiting the 
simulation to not allow either the ML-type or the 
instantaneous inward and two-variable outward current 
model results in only the single-variable inward and 
instantaneous outward models being produced.  This again 
scores better, sooner than the original simulation, but 
ultimately results in inferior scoring models, as well as fewer 
firing neuron models. 
 

IV. SUMMARY 
 
 We have shown that a GA can be used for model 
specification in addition to parameter optimization.  Our 
results also demonstrate the ability of a GA to produce a 
diversity of solution possibilities.  Providing the GA the 
freedom to choose the formulation for each current allowed 
the GA to find the best class of model for the task.  Since a 
ML model was used to generate the target I-F curve, it 
should not be surprising that the GA eventually chose a ML-
type model.  Limiting the class of models available results in 
a lower final fitness, confirming that incorrect assumptions 
about model formulation will result in inferior models.  

These results are useful for future modeling studies where 
the desired formulation of the model is unknown.  This 
technique is also scalable to much larger and more complex 
models. 
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